HBS PLATE

PAN HEAD SCREW FOR PLATES

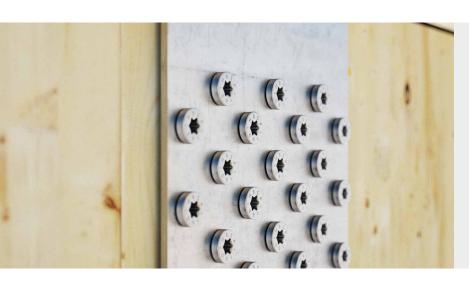
HBS P

Designed for steel-to-timber joints: the head has a shoulder and the thickness is increased for completely safe, reliable fastening plates to the timber.

PLATE FASTENING

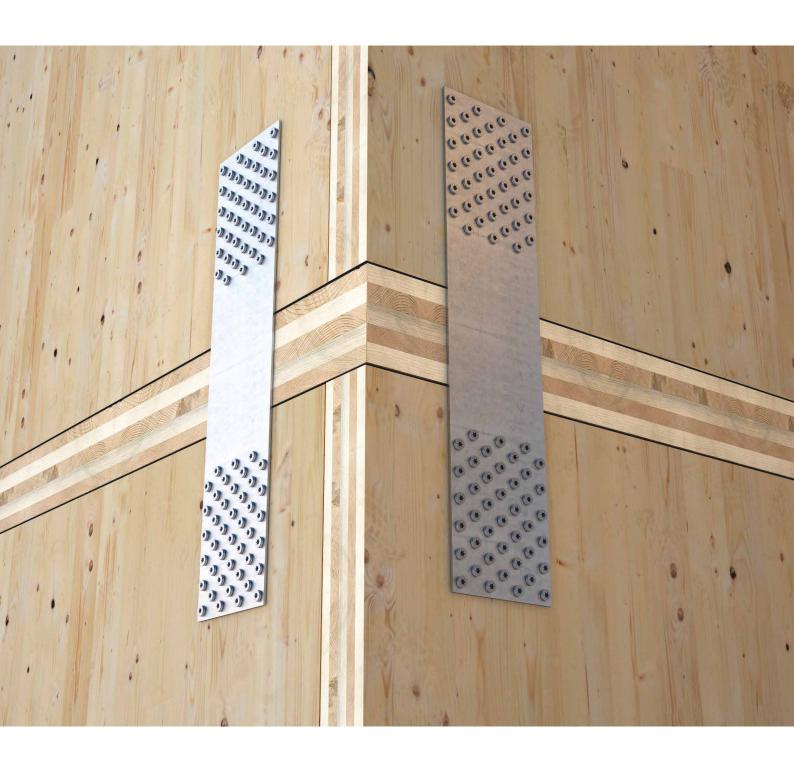
The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance.

LONGER THREAD


Increased thread length for excellent shear strength and tensile strength in steel-to-timber joints. Values higher than normal.

CHARACTERISTICS

FOCUS	steel-to-timber joints
HEAD	shoulder for plate
DIAMETER	from 8,0 to 12,0 mm
LENGTH	from 60 to 200 mm


MATERIAL

Galvanized carbon steel.

FIELDS OF USE

- timber based panels
- solid timber
- glulam (Glued Laminated Timber)
- CLT, LVL
- high density woods

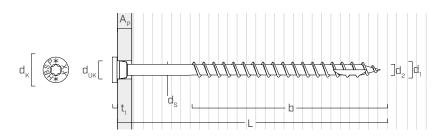
Service classes 1 and 2.

MULTISTOREY

Ideal for steel-to-timber joints with large customized plates, designed for multi-story timber buildings.

TITAN

Values also tested, certified and calculated for fastening standard Rothoblaas plates.



Steel-to-timber shear joint

Mixed steel-to-timber structural joint

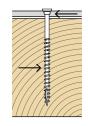
■ GEOMETRY AND MECHANICAL CHARACTERISTICS

Nominal diameter	d_1	[mm]	8	10	12
Head diameter	d_K	[mm]	14,50	18,25	20,75
Thread diameter	d_2	[mm]	5,40	6,40	6,80
Shank diameter	d_S	[mm]	5,80	7,00	8,00
Head thickness	t_1	[mm]	3,40	4,35	5,00
Underhead diameter	d_UK	[mm]	10,00	12,00	14,00
Pre-drilling hole diameter ⁽¹⁾	d_V	[mm]	5,0	6,0	7,0
Recommended hole diameter on steel plate	d _{v,steel}	[mm]	11,0	13,0	15,0
Characteristic yield moment	$M_{y,k}$	[Nm]	20,1	35,8	48,0
Characteristic withdrawal-resistance parameter ⁽²⁾	$f_{ax,k}$	[N/mm ²]	11,7	11,7	11,7
Associated density	ρ_{a}	[kg/m ³]	350	350	350
Characteristic head-pull-through parameter ⁽²⁾	$f_{\text{head},k}$	[N/mm ²]	10,5	10,5	10,5
Associated density	ρ_{a}	[kg/m ³]	350	350	350
Characteristic tensile strength	f _{tens,k}	[kN]	20,1	31,4	33,9

⁽¹⁾ Pre-drilling valid for softwood.

⁽²⁾ Valid for softwood - maximum density 440 kg/m³. For applications with different materials or with high density please see ETA-11/0030.

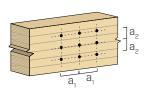
CODES AND DIMENSIONS


d_1	CODE		L	b	A _P	pcs
[mm] [in]		[mm]	[in]	[mm]	[mm]	
	HBSP860 NEW	60	2 3/8	52	1,0 ÷ 10,0	100
	HBSP880	80	3 1/8	55	1,0 ÷ 15,0	100
8 0.32	HBSP8100	100	4	75	1,0 ÷ 15,0	100
TX 40	HBSP8120	120	4 3/4	95	1,0 ÷ 15,0	100
	HBSP8140	140	5 1/2	110	1,0 ÷ 20,0	100
	HBSP8160	160	6 1/4	130	1,0 ÷ 20,0	100
	HBSP1080 NEW	80	3 1/8	60	1,0 ÷ 10,0	50
	HBSP10100	100	4	75	1,0 ÷ 15,0	50
10 0.40	HBSP10120	120	4 3/4	95	1,0 ÷ 15,0	50
TX 40	HBSP10140	140	5 1/2	110	1,0 ÷ 20,0	50
	HBSP10160	160	6 1/4	130	1,0 ÷ 20,0	50
	HBSP10180	180	7 1/8	150	1,0 ÷ 20,0	50

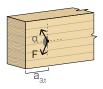
d_1	CODE	L		b	A_{P}	pcs
[mm] [in]		[mm]	[in]	[mm]	[mm]	
	HBSP12100 NEW	100	4	75	1,0 ÷ 15,0	25
	HBSP12120	120	4 3/4	90	1,0 ÷ 20,0	25
12 0.48	HBSP12140	140	5 1/2	110	1,0 ÷ 20,0	25
TX 50	HBSP12160	160	6 1/4	120	1,0 ÷ 30,0	25
	HBSP12180	180	7 1/8	140	1,0 ÷ 30,0	25
	HBSP12200	200	8	160	1,0 ÷ 30,0	25

■ MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER

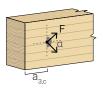
Load-to-grain angle $\alpha = 0^{\circ}$

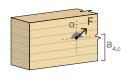


Load-to-grain angle $\alpha = 90^{\circ}$


		SCREWS	INSERTED WIT	H PRE-DRILLIN	NG HOLE	SCREWS	INSERTED WIT	H PRE-DRILLIN	NG HOLE
d_1	[mm]		8	10	12		8	10	12
a ₁	[mm]	5·d · 0,7	28	35	42	4·d · 0,7	22	28	34
a ₂	[mm]	3·d · 0,7	17	21	25	4·d · 0,7	22	28	34
a _{3,t}	[mm]	12·d	96	120	144	7·d	56	70	84
$a_{3,c}$	[mm]	7·d	56	70	84	7·d	56	70	84
a _{4,t}	[mm]	3·d	24	30	36	7·d	56	70	84
a _{4,c}	[mm]	3·d	24	30	36	3·d	24	30	36

		SCREWS IN	ISERTED WITH	OUT PRE-DRILI	LING HOLE	SCREWS INSERTED WITHOUT PRE-DRILLING HOLE			
d_1	[mm]		8	10	12		8	10	12
a ₁	[mm]	12·d · 0,7	67	84	101	5·d · 0,7	28	35	42
a ₂	[mm]	5·d · 0,7	28	35	42	5·d · 0,7	28	35	42
a _{3,t}	[mm]	1 5⋅d	120	150	180	10·d	80	100	120
$a_{3,c}$	[mm]	10 ⋅d	80	100	120	10·d	80	100	120
a _{4,t}	[mm]	5·d	40	50	60	10·d	80	100	120
$a_{4,c}$	[mm]	5·d	40	50	60	5·d	40	50	60


d = nominal screw diameter


unloaded end 90° < α < 270°

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

NOTES:

- The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a timber characteristic density of $\rho_k \leq 420~kg/m^3$ and calculation diameter of d = nominal screw diameter.
- In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1,5.
- In the case of timber-to-timber joints, the minimum spacing (a $_1$, a $_2$) can be multiplied by a coefficient of 1,5.

				SHE	AR		TEN	SION
geometry			thin steel-to-timber plate ⁽¹⁾		th	ick steel-to-timber plate ⁽²⁾	thread withdrawal ⁽³⁾	steel tension
				→				
d ₁	L	b		$R_{V,k}$		$R_{V,k}$	R _{ax,k}	R _{tens,k}
[mm]	[mm]	[mm]		[kN]		[kN]	[kN]	[kN]
	60	52	_	3,03	_	4,76	5,25	
	80	55	4,0 mm	4,07	8,0 mm	5,18	5,56	
8	100	75		4,58		5,69	7,58	20,10
0	120	95	世	5,08	S _{PLATE} =	6,19	9,60	20,10
	140	110	S _{PLATE} :	5,36		6,57	11,11	
	160	130		5,36	0,	7,08	13,13	
	80	60		4,75		7,19	7,58	
	100	75	5,0 mm	6,01	EL.	7,84	9,47	
10	120	95	5,0	6,87	10,0 mm	8,47	12,00	74.40
10	140	110	II E	7,34	11	8,95	13,89	31,40
	160	130	S _{PLATE} :	7,74	SPLATE	9,58	16,42	
	180	150		7,74	SpL	10,21	18,94	
	100	75		6,76	_	9,60	11,36	
	120	90	6,0 mm	8,19	12,0 mm	10,17	13,64	
43	140	110		8,94	12,0	10,92	16,67	77.00
12	160	120	II H	9,32	II III	11,30	18,18	33,90
	180	140	S _{PLATE} :	9,55	Splate = :	12,06	21,21	
	200	160	0,	9,55	S	12,82	24,24	

NOTES:

 $^{(1)}$ The shear resistance characteristics are calculated considering the case of a thin plate (SpLATE \leq 0,5 d₁).

 $^{(2)}$ The shear resistance characteristics are calculated considering the case of a thick plate (SpLATE \geq d₁).

 $^{(3)}$ The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

GENERAL PRINCIPLES:

Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients γ_{M} and $k_{\mbox{mod}}$ should be taken according to the current regulations used for the calculation.

 The tensile design strength of the connector is the lower between the timber-side design strength (R_{ax,d}) and the steel-side design strength (R_{tens,d}).

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k} \cdot k_{mod}}{Y_M} \\ \frac{R_{tens,k}}{Y_{M2}} \end{cases}$$

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.

* For the calculation process a timber characteristic density ρ_k = 385 kg/m 3 has been considered.

Values were calculated considering the threaded part as being completely inserted into the wood.

• Sizing and verification of the timber elements, panels and steel plates must be done separately.

 The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

• For different calculation methods, the MyProject software is available free of charge (www.rothoblaas.com).